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The dynamics of elongation and burst of an isolated viscoelastic drop are investigated numerically in the
special case of a viscosity ratio �=1. We show that the burst threshold is not affected by viscoelasticity itself,
whereas the stationary drop morphology is. A dimple at the tips of the drop can even be observed when elastic
effects are large. The burst dynamics is very sensitive to the presence of viscoelasticity: at low elasticity burst
is slowed down while for large elasticity levels it becomes even faster than the Newtonian situation.
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The pioneering works of Taylor �1� opened the way to a
wide series of studies of elongation and breakup of Newton-
ian droplets. These original contributions led to an analytical
expression for the deformation of an isolated Newtonian
droplet in a Newtonian matrix, in the limit of small deforma-
tions. Those results have been progressively refined and ex-
tended �2,3�. A general overview of the dynamical behavior
of such droplets in a large variety of flows can be sketched.
This system is entirely characterized by two dimensionless
numbers, the capillary number Ca, which compares the ap-
plied stress to the resistance of the drop due to surface ten-
sion effects, and the viscosity ratio between the internal and
external fluids �. Depending on the value of these param-
eters, several behaviors can be observed, and we refer the
interested reader to the reviews on these questions by Ralli-
son �4� and Stone �5� and references therein. Due do its
fundamental importance in the description of the rheological
properties of multiphase flows, several studies have been de-
voted to the presence of interfaces in dilute suspensions, by
Oldroyd �6,7� and then by Palierne, who extended these stud-
ies to the viscoelastic case �8�. Although these important
studies are limited to small deformations due to the highly
nonlinear and free boundary nature of the problem, their pre-
dictions have been successfully compared to experimental
results in the case of uniaxial elongational flows �9�. The
case of viscoelastic droplets is more complicated since vis-
coelasticity implies retarded effects due to energy storage.
This energy storage is characterized by at least an extra pa-
rameter, a relaxation time, but the actual situation is much
more complicated. Several models indeed exist, which can
contain as much as eight independent parameters �10�. This
feature reflects the complexity of the experimental situation
where the presence of the precise chemical structure of the
polymers can strongly affect their viscoelastic response. For
the sake of simplicity we shall restrict here the discussion to
an Oldroyd-B fluid, for which viscoelasticity is accounted for
by two extra parameters: a relaxation time describing the
elastic storage and a viscosity.

Only a few numerical attempts have been made so far to
investigate the droplet dynamics in an elongation flow. Ma-
ffettone and Greco used an asymptotic expansion for small
capillary numbers to determine the droplet shape and stabil-
ity curves �11�; they showed that elasticity has little or no
effect on the critical capillary number. Ramaswamy and Leal

�12� solved the complete free boundary problem in the
steady regime using the Chilcott-Rallison �CR� model. They
showed that the effect of viscoelasticity is rather complicated
because of the combined effects of viscoelastic stresses at the
tips and the viscous forces due to the change in the flow
within the droplet.

In this paper, we focus on the dynamical behavior of an
isolated droplet containing a dilute suspension of polymers,
the drop being subjected to a hyperbolic flow. This is the
natural extension of a previously published work on the elon-
gation and breakup of a Newtonian drop in an extensional
flow �13�, which allowed us to validate a phase field descrip-
tion of the interface. Classical numerical methods �finite el-
ement method �FEM� or boundary element method �BEM��
have been used for this problem in the case of pure elonga-
tion �14,15�, but to our knowledge these methods have never
been applied to the breakup situation itself.

Section I is devoted to the governing equations and the
relevant parameters; we also briefly describe the phase field
approach we shall use �the Appendix is devoted to the more
technical aspects of the numerical scheme�. The phase field
approach has already been used for the description of other
physical mechanisms, from the original works by Collins and
Levine �16� for the simulation of diffusion-limited crystal
growth, extended to the problem of dendritic growth by
Kobayashi �17�, and latter by Karma and Rappel �18� to
stress-induced instabilities in solids by Kassner and Misbah
�19�. In fluid mechanics, Hele-Shaw instabilities �20,21�,
Marangoni convection �22�, vesicles dynamics �23�, or poly-
mer blends �24� are examples of applications of this method.
The next two sections are devoted to the study of the elon-
gation process when the applied constraint is increased:
while the steady states are the subject of Sec. II, we consider
the burst itself in Sec. III, when the applied elongation rate is
too high for the drop to resist. Although the local viscoelastic
stress can hardly be measured experimentally, the numerical
approach allows us to monitor its localization quite easily,
and is thus a useful complement to experimental observa-
tions. We shall focus our analysis on this particular point and
discuss the observed behaviors.

I. MODEL

We consider a three-dimensional �3D� axisymmetric vis-
coelastic droplet �See Fig. 1� of initial radius R suspended in
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a viscous medium with viscosity �s,o, and submitted to a
hyperbolic flow,

vi = �− �̇/2r,0,�̇z� �1�

�in cylindrical coordinates �r ,� ,z� ,r and � are the radial and
azimuthal coordinates, respectively, and z is along the exten-
sion axis�, with �̇ the extension rate.

The drop itself is a polymer solution in a viscous solvent
with viscosity �s,i. The polymer contribution to the global
stress is described here by an Oldroyd-B equation, which
contains only two parameters: a relaxation time � which can
be interpreted as the typical time scale for the polymers to
relax, and a viscosity �p. This kind of model thus includes
the basic ingredients of energy storage and retarded effects
related to viscoelasticity. It must be noted that nonlinear ef-
fects such as a power law relation between the polymer vis-
cosity and the local shear rate are not accounted for by this
model, although they can have practical importance at large
shear rates �10�. The Oldroyd-B equation is indeed known to
describe correctly the dynamical behavior of dilute poly-
meric solutions �for example, the so-called “Boger fluids”
made of dilute polyisobutylene in polybutene �PIB/PB� for
shear rates between 0.1 and 10 s−1 �25��. Typical properties
of the Oldroyd-B model are a constant shear viscosity and a
nonzero first normal stress difference in shear flows. In elon-
gation, it predicts strain hardening above a critical extension
rate �2�̇�=1�. This constitutive equation relates implicitly
the polymer stress tensor to the applied deformations due to
the local flow in the following way:

��
�

p + �p = �p��v + � vT� . �2�

Here, � is the typical relaxation time of the polymers, �p
is the zero-shear rate viscosity of this phase, v is the local
velocity field, and superscript T denotes the transposition of
the tensor. The total viscosity of the drop will then be given

by �s,i+�p. The superscript −
�

denotes the upper convective
time derivative, and is given explicitly by

�
�

p = �t�p + v · � �p − � vT · �p − �p · � v . �3�

This macroscopic equation can be derived from more mi-
croscopical considerations �26� by considering a model of
beads connected by a thermal spring, a crude model for a
polymer in a solvent. The polymers are thus assumed to be
monodisperse and to have a single relaxation time. The cou-
pling between the “polymers” and the surrounding viscous
fluid is described by a drag force proportional to the relative
velocity of the beads and the fluid. This approach allows us
to relate the macroscopic coefficients � and �p to the poly-
mer properties, such as the radius of gyration Rg, the polymer
concentration �, and the thermal energy kBT. The resulting
dependence for � and �p is ��Rg

3�s,i / �kBT� and �p��s,i�Rg
3

�26�. The Newtonian limit corresponds either to �=0 or to
�p=0. For a given temperature and solvent viscosity the lat-
ter condition corresponds to a vanishing volume fraction of
polymers �Rg

3=0 while the former is associated with a can-
cellation of the radius of gyration Rg=0 only �and the corre-
sponding polymers reduce to classical molecules�. These two
conditions are thus of different physical origin and the poly-
mer concentration can formally be canceled by dilution at a
fixed value of the radius of gyration �i.e., at fixed relaxation
time�. The relaxation time alone is thus not a direct charac-
terization of the viscoelasticity of the polymer solution. An-
other way to cancel the relaxation time is to increase tem-
perature: in that case, the Brownian forces dominate the
viscous drag and the polymers decouple from the surround-
ing fluid.

The interfacial energy between the drop and the sus-
pended medium is called 	. This parameter is affected by the
possible adsorption of polymers at the interface, resulting in
a Marangoni effect which could have profound consequences
on the drop behavior such as tip streaming �5�. This coupling
is not included in our study. Including the mass density 
 of
the fluids �we consider here neutrally buoyant droplets, so
the density inside and outside are the same�, we can con-
struct five dimensionless parameters which describe the sys-
tem entirely:

Re =

R2�̇

�s,o
, the Reynolds number,

Ca =
�s,o�̇R

	
, the capillary number,

De =
�	

�s,oR
, the Deborah number, �4�

�s =
�s,i

�s,o
, the �solvent�/�solvent� viscosity ratio,

�p =
�p

�s,o
, the �polymer�/�solvent� viscosity ratio.

These parameters can be estimated for Boger fluids using
typical values as discussed in �25�. We shall first estimate the
Reynolds number that compares inertial to viscous stresses.
If we consider a 100 �m drop suspended in a medium with
viscosity �s,o�1 Pa s �like glycerol�, the mass density of

FIG. 1. Sketch of the system. The initial radius of the drop is
denoted by R and the long �small� axis by L�B�. The polymers
inside the drop are modeled by spherical beads connected by
springs �Rouse model�.
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both fluids being of the order of 
�103 kg m−3, the Rey-
nolds number can be estimated to Re�10−5 for a shear rate
�̇�1 s−1. Inertia can thus be neglected and we shall use the
Stokes approximation in the following. Ca compares the re-
sistance of the drop �due to surface tension effects� to the
applied stress: a large capillary number corresponds to a
highly deformable drop. This is the first key control param-
eter of this study. With a typical 	�10−3 N m−1 we get Ca
�0.1. The second essential parameter is the Deborah number
characterizing the elastic effects in the internal fluid: the
larger the De, the higher the viscoelastic effects. Using a
typical value ��1 s, the Deborah number is De�10. Fi-
nally, the two viscosity ratios will be chosen such that �
=�s+�p=1 and �s=�p=0.5 in the following, essentially to
reduce the parameter space dimension. Of course these di-
mensionless parameters can be combined to form alternative
parameters, like the Weissenberg number ��̇ which can be
used instead of the Deborah number. While the Deborah
number compares the relaxation time of the polymers to the
capillary time, and thus characterizes the viscoelasticity of
the droplet intrinsically �whatever the applied flow�, the
Weissenberg number, on the contrary, compares the vis-
coelastic time to the applied deformation rate. Our prefer-
ence for the Deborah number is based on the type of experi-
ment we wish to model: we apply an increasing elongation
rate to a given drop, which corresponds to a fixed Deborah
number and an increasing capillary number.

In order to use dimensionless equations, we rescaled the
time variable by the typical relaxation time of the drop
tdrop=�s,oR /	 and the length by its initial radius R. The gov-
erning equations are thus given by

� · ��p + �s,i� − � Pin = 0 inside,
�5�

� · �s,o − � Pout = 0 outside.

�s,i and �s,o are the Newtonian contributions to the stress,
respectively, inside and outside the drop. They are simply
related to the local deformation rate in the fluid by a linear
relation �s,i=�s��v+ �vT� �and �s,o= �v+ �vT for the
outer fluid�. The appropriate dimensionless boundary condi-
tions at the drop interface �V are given by

�vin��V · t̂ = �vout��V · t̂ ,

�vin��V · n̂ = �vout��V · n̂ , �6�

�n̂ · ��s,o − PoutI3���V = �n̂ · ��p + �s,i − PinI3�

· n̂��V − ��1 + �2�n̂ ,

with �1 and �2 the two main local curvatures of the drop
�positive for a sphere� �27� and I3 the three dimensional unit
tensor. The first equation describes the continuity of the tan-
gential velocity field across the interface �no slip condition�,
the second one expresses the absence of flow across the in-
terface, and the last one describes the continuity of the total
stress. The tangential stress is continuous, but the normal
stress presents a jump equal to the local curvature of the
interface �surface tension is absorbed in the scaling�, accord-

ing to the Laplace law. The local incompressibility of the
fluid writes

� · v = 0. �7�

As mentioned previously, the polymers will be described
with the Oldroyd-B equation �2�. In dimensionless units we
have

De�
�

p + �p = �p��v + � vT� . �8�

This set of equations is highly singular due to the free
boundary nature of the problem and to the possible topologi-
cal changes in the drop shape. Recently, a phase field ap-
proach has been developed to model the deformation and
breakup of a Newtonian drop �13�. The method has been
shown to be quantitative in that limit. We refer the interested
reader to the Appendix for further details concerning the nu-
merical implementation of the method in the case of vis-
coelastic droplets. The main advantage of the method is the
simplicity of its numerical implementation. The boundary
conditions at the interfaces are accounted for without any
complicated front tracking procedures. Basically, the method
is based on a regularization of the interfacial profile, which is
described by a Ginzburg-Landau-like order parameter field
. As a result, all the singularities associated with the inter-
faces are removed in this description, and we simply end up
with diffusionlike problems in the whole space. Obviously,
such a regularization procedure introduces an extra length
scale, the interfacial width, which produces a natural cutoff
at small scales. This cutoff is chosen in practice to match the
lattice spacing of the resolution mesh. It is thus not an im-
portant restriction. To study small scale effects, such as self-
similarity laws during the breakup �28–31�, or filament for-
mations �32,33�, more precise numerical schemes are,
however, preferable.

We use the prescription that �0 inside the drop and 
�0 outside. In practice we set = ±1 far away from the
interface, and force its variation across the interface to be of
the tanh-like form. Although this kind of profile can easily be
generated initially �34�, a pure advection of this profile, con-
sistent with the boundary conditions �6�, does not preserve
the tanh shape. A restoring term thus has to be added to
advection to enforce the tanhprofile across the interface,

�

�t
+ v · �  =

1

�
��1 − 2� + �2�� − 2c��� � ��� �9�

with c�� the local mean curvature of the field and � a re-
laxation time. While the left hand side corresponds to advec-
tion, the right hand side is the restoring term. This contribu-
tion is made of two parts. The first one comes from the
functional minimization of a Ginzburg-Landau-like free en-
ergy F,

�F
�

= �1 − 2� + �2� �10�

with F=	��1−2�2 /4+�2���2 /2�dr. This term enforces a
tanh-like profile for the field  at the interface, with a sharp
variation zone centered on 0 �which will define the interface
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locus� and of width �
2. In order to make the numerical
scheme insensitive to � up to first order �20,21�, a corrective
term −2�2c����� /� is added into Eq. �9� that prevents non-
physical drifts to occur. Finally, � is chosen such that the
relaxation toward this profile is faster than any other physical
process in the system. In that case, the interface can be con-
sidered to be purely advected by the flow.

The curvature field can be constructed from the normal
vector field, i.e., normal to the isosurfaces of  : n̂
= � / ���. The mean curvature is defined by c��= � · n̂ /2
�c= +1 for a unit sphere�. Finally, we can construct a regu-
larized Dirac function centered on the interface

��r� =
� � �

2
. �11�

The factor 1 /2 ensures the normalization of this function
across the interface. The Stokes equations �5� are rewritten as

� · ��s,i
1 − 

2
+ �s,o

1 + 

2
+ �p� − � P − c�� �  = 0 .

�12�

The boundary conditions �6� are automatically satisfied
thanks to the continuity of all the fields involved. The mo-
mentum equation is solved using a relaxation method, intro-
ducing an auxiliary Reynolds number Ren of typical order
10−2 in our case, which is compatible with the Stokes ap-
proximation. Finally, the dynamical equations to be solved
are given by

�t = − v · �  +
1

�
��1 − 2� + �2�� − 2c��� � ��� ,

Ren�tv = � · �1 − 

2
�s,i +

1 + 

2
�s,o + �p� − � P − c�� �  ,

�13�

De
1 − 

2
�
�

p = − �p + �p
1 − 

2
��v + � vT� ,

� · v = 0,

with the appropriate applied elongation flow �1�. Note that in
the �→0 limit,  becomes an indicator function �−1 inside
the drop and +1 outside�, the constitutive equation thus re-
duces to �p=0 outside the drop, as expected since there is no
polymer there.

II. STEADY SHAPES

As a routine test of the method, we have set the relaxation
time to 0 �De=0, Newtonian drop� and have plotted the sta-
tionary elongation D= �L−B� / �L+B� as a function of Ca,
when a steady state exists. In that limit, Taylor’s result for
small deformations �1� should be recovered,

D =
3

2
�19� + 16

16� + 16
�Ca, �14�

where the prefactor 3 /2 accounts for the 3D elongational
flow considered �4�. We can see in Fig. 2 that it is indeed the

case in the limit of vanishing Ca. The order Ca2 theory of
Barthès-Biesel and Acrivos �3� is plotted also and is seen to
compare very well with our numerical findings.

Viscoelastic effects are obtained by increasing the Debo-
rah number progressively. Figure 3 shows the drop deforma-
tion as a function of Ca for various Deborah numbers. The
drop deformation is reduced by the presence of polymers and
above a critical value of Ca �typically between 0.11 and 0.12
for all the considered values of the Deborah number�, the
stationary state disappears �the burst transition� and the drop
breaks, as will be discussed in the next section. The shapes
corresponding to Ca=0.1125 have been indicated in Fig. 3
for De=0 and 10, showing that although the deformation �as
defined by D� is weaker for viscoelastic droplets, the overall
shape is strongly affected by viscoelasticity. These features
have been already observed in the numerical studies by
Hooper et al. �14,15�, with approximately the same order of
magnitude, and by Ramaswamy and Leal �12�, using the CR
model.

In Fig. 4 we present the steady shape of the drop for
various Deborah numbers; a curvature inversion takes place
along the elongation axis in the case of the viscoelastic drop.
Since L corresponds to the half length of the drop along the

FIG. 2. Comparison between our numerical computation, the
linear analysis of Taylor and the small deformation theory of
Barthès-Biesel and Acrivos �3�. Here De=0 and �=1 �no viscosity
contrast�.

FIG. 3. Influence of viscoelasticity. The Deborah number has
been varied between 0 �Newtonian� and 10. The shapes correspond-
ing to De=0 and 10 are indicated for Ca=0.1125.

BEAUCOURT, BIBEN, AND VERDIER PHYSICAL REVIEW E 71, 066309 �2005�

066309-4



axis, as depicted in Fig. 4, the deformation “D” is underes-
timated for De=10 giving the particular shape of the defor-
mation curve presented in Fig. 3.

A plot of the mean curvature of the drop at its end, along
the elongation axis, clearly illustrates this effect in Fig. 5. We
observe that all the curves �for different De� collapse and
tend towards the value +1 for a vanishing Ca, as expected
since the drop shape remains essentially spherical in that
limit, with L�B� 1. For small values of De, this curvature
increases with Ca, showing the growing effect of the applied
elongation. But above a certain value of De, between 3 and
5, this behavior is reversed and the curvature decreases with
Ca. For De�7.5, it even becomes negative, and the rapidly
decreasing slope is in favor of a cusp formation.

It is interesting to discuss in more detail the results ob-
tained with the CR model �12�. This model is indeed a modi-
fied version of the Oldroyd-B model that suppresses some
pathologies associated with it. The Oldroyd-B model is
known to present some inconsistencies in hyperbolic flows
for homogeneous unbounded systems, and it can be shown
that the elongational viscosity diverges when �̇� �which
would correspond to CaDe here� reaches 1/2. This diver-
gence is essentially due to the linearity of the springs con-
sidered in the Oldroyd-B model that does not prevent a
“polymer” dumbell to extend infinitely at a finite elongation
rate. The CR model introduces a nonlinearity associated with
the spring constant, which is assumed to diverge as 1/ �1
− �x /L�2� with x the actual length of the spring and L the
polymer length �FENE dumbells�. The Oldroyd-B model is

recovered when L2→ +�. To compare our results with �12�
we considered their maximum value L2=600, for which
Deborah numbers as large as De=10 and even De=20, with
our definition, have been probed with Ca=0.1. Although the
comparison is difficult since the polymer concentration is an
order of magnitude lower in �12� than in our study, the ob-
served behavior is similar, and a cancellation of the curvature
at the tip can even be observed. Unfortunately, their numeri-
cal scheme could not provide solutions for nonconvex shapes
and they could thus not observe the dimple formation. Al-
though we use the Oldroyd-B model, the similarity of our
results and the data obtained in �12� shows that we remain in
a region where the two models are comparable �i.e., below
the singularity�. We are comforted further in this belief by
the stability of the relaxation dynamics. All the presented
shapes correspond to stable solutions, and the pathology of
the Oldroyd-B model is not observed for the Deborah num-
bers we considered, even when �̇��1/2. We are indeed
never in a situation corresponding to a steady unbounded
elongational flow inside the droplet for which the pathology
develops. The initial state corresponding to a pure elonga-
tional flow is unsteady, and the polymers are at rest, corre-
sponding to a Newtonian regime. In the steady regime we
can expect elongational flows to exist in the vicinity of the
stagnation points, but we shall see that these points corre-
spond to a very weak local elongation rate. We thus expect
the dimple to be a physical effect. To understand the dimple
formation, various quantities can be measured among which
the local viscoelastic stress and the local elongation rate pro-
vide complementary informations. The viscoelastic stress is
located in regions where polymers are elongated; this elon-
gation, however, applies important constraints to the flow
resulting in a reduction of its intensity.

This screening of the flow can become important in re-
gions where polymers spend a long time, for example in the
vicinity of a stagnation point like the tip of the drop �12�. On
the contrary, the local elongation rate is large in regions of
the flow where polymers spend a short time. A plot of these
quantities is shown in Fig. 6. Before discussing this figure, it
is worth introducing more precisely the various quantities
presented. The flow lines are plotted in the first column of
Fig. 6; they correspond to the isocontours of the streamfunc-
tion � defined by v= � � ��e��, where e� is the azimuthal
normal vector. The next column corresponds to the local
elongation rate. Thanks to the axisymmetry of the system �no
velocity along the orthoradial direction, no dependence of
the velocity components with the angular variable�, the rate-
of-deformation tensor can be written in the following way:

2E = � v + � vT =
2

�vr

�r
0

�vz

�r
+

�vr

�z

0 2
vr

r
0

�vz

�r
+

�vr

�z
0 2

�vz

�z

� .

�15�

The eigenvalues of this tensor represent the local deforma-
tion �elongations and contractions� of a fluid element. The

FIG. 4. Drop stationary shapes for Ca=0.1125 and increasing
Deborah numbers. The tip flattens and its curvature can even be
inverted for De�7.5. All the shapes correspond to the same volume
4� /3.

FIG. 5. Mean curvature at the tip.
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sum of these three eigenvalues can be checked to be every-
where equal to 0, as expected from the incompressibility
constraint �7�. The local elongation rate can be estimated by
computing the root mean square of the eigenvalues:

tr�E ·ET�; as a comparison, it would be equal to 
3/2�̇ for
a purely uniaxial elongation flow. This quantity is plotted in
the second column of Fig. 6. The third column represents the
viscoelastic stress as given by the trace of �p. This quantity
is directly related to the mean elongation of the polymers
�r2� through the relation �10�

�r2�
�r2�eq

= 1 +
De

3�p
tr��p� . �16�

Here, �r2�eq is the mean equilibrium end-to-end distance of
the polymers, which is nonzero due to thermal forces.

Several interesting features can be observed in Fig. 6.
First, the flow lines that occupy all the drop volume in the
Newtonian situation tend to concentrate in the vicinity of the
interface when the Deborah number increases. The flow is
clockwise and the maximum value of the streamfunction �,
indicated on the graph, corresponds to the intensity of the
rotational flow. This intensity reaches a maximum for De
�1 and decreases at larger values, indicating a strong vis-
coelastic screening of the flow. Note that � is defined such
that �=0 along the contour of the drop �we checked that �
=0 corresponds to the isocontour =0 of the phase field,
confirming the stationarity of the shape�. From the deforma-
tion tensor, the local elongation rate can be computed as
explained above and its localization illustrates quite well this

phenomenon while increasing De. At low Deborah number
the elongation rate is maximal at the tip of the drop. This can
be easily understood since the capillary constraints are maxi-
mal at the tip and the counterflow induced by these con-
straints is thus very large in this region. This effect is ampli-
fied by the axial geometry since the flow has to converge
towards the axis before going back to the central part of the
drop. When the Deborah number is increased, the elongation
rate at the tip decreases and the flow is displaced to the
neighboring region, closer to the interface as also observed
in �12� with the CR model. To understand this feature, it is
interesting to consider the case of a single polymer placed in
a Newtonian drop. For a Newtonian drop, the tip corresponds
to the region where the elongation rate is maximum. A poly-
mer present in the drop should follow the flow lines and
rotate clockwise for the quarter of the drop considered in Fig.
6. If the polymer follows a streamline close to the interface
of the drop it should suffer an increasing elongation rate
before reaching the tip. While arriving close to the tip the
polymer thus presents an elongation that should be relaxed
on its way back to the central part of the drop, in the axial
region of the drop. Not surprisingly, the viscoelastic stress
plotted in the third column is essentially localized around the
tip, where the polymers are expected to present the largest
deformations. On its way to the tip, the polymer stores elas-
tic energy while flowing in the vicinity of the interface where
the elongation rate is large �after Fig. 6�, resulting in the
screening of the flow. Since the response of the polymer is
delayed by a time �, the screening becomes efficient mostly
in the axial region of the drop explaining the strong damping
of the flow there. The flow thus tends to escape from the
axial region, amplifying the effect. Thanks to the localization
of the viscoelastic stress at the tip, the capillary constraints
are reduced since the polymers support part of the stress
applied by the external elongation flow. The local curvature
of the interface is thus reduced at the tip when viscoelastic
effects are increased. Amazingly, at a large value of the
Deborah number �De�10�, the energy storage in the poly-
mer solution seems to be so large that the curvature of the tip
can even become negative. This kind of morphology has
indeed already been observed in a similar system �35�: a
macroscopic drop �of typical radius 1 cm, Newtonian or vis-
coelastic� is falling in a viscous fluid, and a stationary state is
reached after a short time, depending on the density differ-
ence between the drop and the suspending fluid. Locally, at
the rear side of the drop, the flow is fully similar to the one
produced by the elongation �axisymmetry of the system and
recirculations caused by the absence of normal velocities
across the interface�. In the case of the falling drop, a dimple
appears at the rear of the viscoelastic drop, whereas the New-
tonian remains nearly spherical. In this configuration, a
stable torus can even appear, but in our situation, the drop
loses its stability before any structure of this kind can be
observed.

III. BURST

We consider here the burst transition that occurs when the
applied stress overcomes the resistance of the drop �mainly

FIG. 6. Streamlines, local elongation rate, and viscoelastic stress
for increasing values of De and for Ca=0.1125 �only a quarter of
the drop is plotted�.
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due to surface tension and viscoelasticity�. The burst thresh-
old is defined as the critical capillary number above which
no steady shape can be defined. Above this threshold, the
drop elongates until it breaks into smaller fragments. Al-
though the burst threshold depends on the viscosity ratio �,
we shall not consider the dependence as a function of this
parameter here, but restrict the discussion to �=1. The main
control parameter is thus the Deborah number De. As men-
tioned in the paper of Buckmaster and Flaherty �36� which
devoted to the study of bursting of two-dimensional Newton-
ian droplets, a good criterion for the loss of stability is the
cancelation of the curvature of the drop at its mid section. In
three dimensions, the corresponding parameter should be the
Gaussian curvature G which is defined as the product of the
two local main curvatures �1 and �2 �G=1 for a sphere�.
Indeed, when the drop is locally cylindrical in its central
region, the Gaussian curvature vanishes. This quantity is
known to play an important role in surface topology, thanks
to the Gauss-Bonnet theorem: the topological genus of a sur-
face is equal to the integral of the Gaussian curvature over
the whole surface, divided by 2�. We show in Fig. 7 the
local Gaussian curvature in the mid section of the drop in the
steady state for different values of De and Ca. Interestingly
these curves are essentially insensitive to De, and can be
fitted with a simple parabolic law �the continuous line of Fig.
7�,

G =
1 −
Ca

Cac
, �17�

where Cac corresponds to the cancellation of G, and should
correspond to the 3D burst threshold after �36�. The critical
capillary number Cac derived from this procedure is around
0.13 �close to 0.116, as determined below�. The Gaussian
curvature thus appears as a good parameter for the charac-
terization of the transition. A more precise determination of
the burst threshold can be achieved by using a dichotomic
process on Ca, up to a relative precision of 10−3.

The results are presented in Fig. 8. We found a critical
capillary number Cac�0.116: up to this precision, no differ-
ence can be made between the different drops: viscoelasticity
does not seem to play any major role in that process, as
expected from Fig. 7, in agreement with �11�. This result can
be understood by remembering that the viscoelastic effects
are mainly located at the tip of the drop in the steady state,
where elongation and contraction of the polymers are the
most important, whereas the burst criterion is determined by
the central part where elastic effects are weak. On the con-
trary, the burst dynamics �and thus the breakup� is affected
by the presence of polymers, as can be seen in Fig. 9, where
we have plotted the Gaussian curvature in the mid section as
a function of time for different values of De. The Gaussian
curvature is initially equal to unity, as expected from the
spherical initial configuration �with R=1�, and it decreases as
time elapses. The curvature vanishes when the drop flattens
in the middle, goes through a minimum, and tends toward
zero, which corresponds to the Gaussian curvature of a cyl-
inder. Another criterion for the burst is the relative elonga-
tion L /R of the drop �see Fig. 10�. We see that this quantity
increases very rapidly during the burst, with the presence of
an inflexion point. These two points �first cancelation of G
and �d2L /R� /dt2=0� will be used to quantify and compare
the breakup velocity.

We show in Fig. 11 the value of these two breakup times
for different Deborah numbers. Clearly, the general evolution
of these two parameters is similar: at low De the burst
mechanism is slowed down due to the presence of polymers,
since the two curves are initially growing with De. Above a
certain value of De, typically between 3 and 5, the dynamics

FIG. 8. Breakup threshold as a function of the Deborah
number.

FIG. 9. Gaussian curvature in the mid section as a function of
time during the burst �Ca=0.12�.FIG. 7. Gaussian curvature in the mid section of the drop. The

black curve is a parabolic fit of the whole set of data.
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is suddenly accelerated, and becomes even faster than in the
Newtonian case. This range of De was already mentioned in
the previous section as the region where a dimple appears at
the edges of the stationary shapes.

As an illustration, the burst dynamics is presented in Fig.
12 for a Newtonian drop �De=0� and for De=10, corre-
sponding to the most viscoelastic situation considered here.
The burst sequence is sampled every 10tdrop in this figure, so
that the successive shapes presented by the Newtonian and
the viscoelastic drops can be compared at equal time. We
clearly observe a faster dynamics when De=10. The stream-
lines in the vicinity of the drop, the local strain rate, and the
viscoelastic stress are shown in Fig. 13. The instantaneous
streamlines can cross the interface since we consider un-
steady flows, and we chose to present the streamlines going
inside the drop only. We can observe that until t�40tdrop a
rotational counterflow is present inside the drop �the closed
streamlines� while above t=50tdrop the flow is essentially
dominated by the imposed elongation. This feature illustrates
that at the beginning, the drop resists quite efficiently against
the elongational process, as shown in Fig. 10 where we can
see that the deformation is slowed down until t�40tdrop. At
later times, the deformation is accelerated again since the
counterflow becomes too weak to compensate the applied
elongation. We can further observe that between t=50tdrop
and t=60tdrop a curvature inversion takes place at the tip �see

Fig. 14�, reminiscent of the counterflow and the growth of
the viscoelastic stress located at the tip �last column of Fig.
13�. The curvature inversion disappears at later stages as
confirmed by the sudden reduction of the viscoelastic stress
at the tip.

Above t=60tdrop we can see in the second column of Fig.
13 that quite a large strain rate is applied to the center of the
drop now, which strongly differs from the steady situation,
and from the first stage of the burst �below the inflexion
point in Fig. 10�. Although we were not able to follow the
dynamics above t=75tdrop, due to the extremely fast re-
sponse, we can conjecture that this very large elongation rate
in the central part of the drop should result in an accumula-
tion of viscoelastic stress in this region. This building of the
viscoelastic stress in the center of the drop is already visible
in the last column of Fig. 13 for t=70tdrop. The presence of
this stress should strongly alter the breakup sequence, and
might even result in the production of a thin filament. Un-
fortunately, we could not reach the breakup itself for this

FIG. 10. Elongation of the drops as a function of time during the
burst �Ca=0.12�.

FIG. 11. Burst dynamics as measured by the breakup time
�Ca=0.12�.

FIG. 12. Comparison of the burst dynamics for De=10 �top
sequence� and for a Newtonian drop �bottom�. The configurations
are sampled every 10tdrop�Ca=0.12�. Time is mentioned in units of
tdrop for t=0, 60, and 70. We clearly observe a faster dynamics
when De=10.

FIG. 13. Burst dynamics for De=10 and Ca=0.12. The stream-
lines are presented in the first column at different reduced times; the
strong line corresponds to the instantaneous shape of the drop. The
maximum value of the streamfunction is indicated at each time. The
second column corresponds to the local deformation rate while the
last column shows the location of the viscoelastic stress.
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kind of applied flow, but there are strong indications that
breakup is unlikely to occur in an Oldroyd-B fluid �37�.

IV. CONCLUSION

The dynamical behavior of an isolated viscoelastic drop in
a hyperbolic flow has been investigated using a phase field
approach of the free boundary problem. We have shown that
the method allows for the determination of the stationary
shapes as well as the burst mechanisms. In the first case, we
have shown that viscoelasticity induces morphological
changes at the ends of the drop, along the main axis of elon-
gation. A simple phenomenological mechanism involving a
competition among the applied deformation, capillary ef-
fects, and viscoelasticity has been proposed in order to ex-
plain the dimple formation.

We have shown that the viscoelastic stress is mainly lo-
cated at the ends of the drop in the stationary regime, and in
the vicinity of the interface. This region corresponds to im-
portant recirculation processes. The burst transition corre-
sponds to the loss of stability of the steady shape, and seems
to be controlled by the central region of the drop. Indeed, the
burst corresponds to the cancellation of the Gaussian curva-
ture at the mid section of the drop. Since the central region of
the drop corresponds to weak elastic constraints, the breakup
threshold is found to be insensitive to elasticity �for Deborah
numbers between 0 and 10�, in agreement with previous re-
sults �11�.

Finally, we have investigated the burst mechanism itself
by considering a drop with Ca�Cac�Ca=0.12� and we have
shown that a good parameter to quantify the breakup velocity
is either the time when the Gaussian curvature vanishes or
when the second time derivative of L�t� /R vanishes. The
Gaussian curvature is, in our opinion, a better parameter
since it can be measured on a single snapshot, while the
inflexion point requires the measurement of the full elonga-
tion curve. These two parameters revealed that the breakup is
first slowed down by viscoelasticity at low values of De
�typically less than 3�, and then suddenly accelerated. Once
again, we proposed a simple explanation of this behavior by
considering the location of the viscoelastic stress inside the

drop. During the burst, the viscoelastic stress becomes im-
portant in the middle of the drop that should result in the
formation of a thin filament.

Nevertheless, some important points still remain to be in-
vestigated. First of all, we know that the breakup threshold
for Newtonian drops is affected by the viscosity ratio. The
influence of this parameter in the viscoelastic case still needs
to be considered. Some experimental studies �38� suggest
that the threshold is only slightly affected when the viscosity
ratio is larger than 1, but is considerably reduced when this
parameter becomes small and that pointed unstable droplets
are obtained. We are currently working in this direction. Sec-
ond, the possible adsorption of polymers at the interface is
expected to modify the dynamics of the drop and, for ex-
ample, to induce ejection of microscopic droplets at its
pointed edges �5�. This effect could be accounted for in prin-
ciple in our model, and special attention should be paid to
the precise modeling of Marangoni effects.

APPENDIX: NUMERICAL IMPLEMENTATION OF THE
PHASE FIELD METHOD

We describe here the numerical scheme used to solve the
phase field equations. Once the velocity field v, the phase
field , and the viscoelastic stress tensor �p are known at
time t , a basic step consists in estimating their new values at
time t+dt . We will establish the expressions for vt+dt ,t+dt,
and �p

t+dt from Eqs. �13�, and we shall explain how the vari-
ous quantities involved in these expressions are computed,
with special attention to the axisymmetrical nature of the
system.

1. The velocity field

The Stokes equation �12� is solved using a relaxation
method:

Ren�tv = � · �1 − 

2
�s,i +

1 + 

2
�s,o + �p� − � P − c�� �  .

�A.1�

Ren is a numerical Reynolds number which controls the re-
laxation velocity. In practice, this parameter is of order 10−2

in order to stay in the Stokes regime. Equation �A.1� can be
rewritten as

Ren�tv = �s���v − � P − c�� �  + � · �p

+ �s��� �  · ��v + � vT� , �A.2�

with �s��= ��1−� /2��s+ �1+� /2 and �s���=d�s�� /d.
We have used the incompressibility constraint �7� to elimi-
nate the term � · ��vT�= � �� ·v�=0. Thanks to the axisym-
metric geometry of the system, the resolution can be per-
formed in 2D. In cylindrical coordinates the rate-of-
deformation tensor is given by

FIG. 14. Mean curvature at the tip of the drop during the burst.
When De�5.62, a transient curvature inversion is observed at the
tip.
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D = � v + � vT =
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�vr
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0

�vz
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�z

0 2
vr
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0

�vz

�r
+

�vr

�z
0 2

�vz

�z

�
�A.3�

so the contribution � · ��v+ �vT� appearing in Eq. �A.2�
reduces to

� · ��v + � vT� =2
�

�r

�vr

�r
+

�

�z
� �vr

�z
+

�vz

�r
�

0

�

�r
� �vr

�z
+

�vz

�r
� + 2

�

�z

�vz

�z
� .

�A.4�

The Laplace operator for a vector field is given by

�v =
�2vr

�r2 +
�2vr

�z2 +
�

�r
�vr

r
�

0

�2vz

�r2 +
�2vz

�z2 +
1

r

�vz

�r
� , �A.5�

where we have explicitly assumed an axisymmetrical geom-
etry. This expression only differs from a 2D Laplacian by the
extra 1 /r contribution. Equation �A.2� can thus be rewritten
as

Ren�tv = �s���2Dv − � P + F �A.6�

with

F = − c�� �  + � · �p + �s��� �  · ��v + � vT�

+ �s��
�

�r
�vr

r
�

1

r

�vz

�r
� �A.7�

and

�2Dv =
�2vr

�r2 +
�2vr

�z2

�2vz

�r2 +
�2vz

�z2
� . �A.8�

The computation of F is straightforward once �p is
known �see paragraph 3 below�. The main difficulty con-
cerns the computation of the curvature field, defined as
c��= � · n̂ /2 with n̂= � / ���. Although � corresponds
exactly to the 2D expression in the �r ,z� space, the diver-
gence itself is slightly modified and is written as

� · v = �2D · v +
vr

r
, �A.9�

with �2D ·v= ��vr /�r�+ ��vz /�z� the usual two-dimensional
divergence.

In all these expressions, the 1/r contributions require spe-
cial care at r=0. The divergence is indeed artificially intro-
duced by the coordinate system and the physical quantities
entering in the problem have a regular behavior on the axis.
A simple extrapolation scheme can thus be used to estimate
these quantities at r=0. We used the third order extrapolation
scheme,

f�0� =
1

11
�18f�dr� − 9f�2dr� + 2f�3dr�� �A.10�

with dr the mesh size in the radial direction. Written in this
way, the system can be treated as purely two dimensional.

The �2Dv term in Eq. �A.6� is known to introduce numeri-
cal instabilities when the time step is too large. Two possi-
bilities exist to suppress this problem: reducing the time step
or using an implicit scheme. The second solution is much
more powerful since it fully suppresses the instability. How-
ever, we cannot use this scheme here in a strict way due to
the non linearity introduced by the spatial variation of the
viscosity field �s��. A mixed scheme can be implemented by
subtracting �s,max�2Dv from both sides of Eq. �A.6�, where
�s,max is the largest value of the viscosity in the system.
Equation �A.6� is therefore rewritten as

�Ren
�

�t
− �s,max�2D�v = ��s�� − �s,max��2Dv − � P + F .

�A.11�

Although we use in practice a fourth order Runge-Kutta
method for the temporal integration, it is interesting to con-
sider a single semi-implicit Euler integration step to empha-
size the interest of Eq. �A.11�. The temporal derivation can
be discretized as �v /�t��vt+dt−vt� /dt, where dt is the time
step, and then Eq. �A.11� takes the discrete form

Ren
vt+dt − vt

dt
− �s,max�2Dvt+dt = ��s�t� − �s,max��2Dvt

− � P + Ft. �A.12�

The implicit method consists of evaluating the Laplacian
term on the left side at time t+dt. The velocity field at time
t+dt is then obtained by inverting

�1 − �s,max
dt

Ren
�2D�vt+dt = vt +

dt

Ren
���s�� − �s,max��2Dv

− � P + F�t. �A.13�

This inversion can easily be done in the �spatial� Fourier
space if periodic boundary conditions �PBC� apply at the
edge of the resolution box. This is indeed not the case in
general when the drop is placed in an external flow, like a
hyperbolic elongation, for example. Interestingly, if the
external applied flow is linear �this is indeed the case for the
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applied elongation flow�, the only contribution arises in the
rate-of-deformation tensor, not in the Laplacian, and can be
evaluated analytically. Setting v=vi+u, where the imposed
field vi is time independent and linear in space, and u is the
velocity field induced by the drop, Eq. �A.13� rewrites

�1 − �s,max
dt

Ren
�2D�ut+dt = ut +

dt

Ren
���s�� − �s,max��2Du

− � P + F�t. �A.14�

Assuming PBC for the induced field u only, and noticing that
the gradient tensor only plays a role in the vicinity of the
interface thanks to the � prefactor �see Eq. �A.7��, this
contribution cancels at the boundary of the resolution box
and can then satisfy PBC. This last equation can thus be
inverted in the Fourier space to give

uk
t+dt =

1

1 + �s,max
dt

Ren
k2

��uk
t +

dt

Ren
���s�� − �s,max��2Du − � P + F�k

t�
�A.15�

where index “k” denotes a spatial Fourier transformation
of the quantity at wavevector k. The power of
the implicit scheme comes from the property that
�1/ �1+�s,max�dt /Ren�k2���1 for all wavevectors k whatever
the value of dt, which ensures the stability of the iterative
scheme in the absence of the term between braces �pure dif-
fusion�. Due to the presence of this extra term, the iterative
scheme does not always converge, but instabilities occur at
much larger values of dt.

In this equation, the pressure field P is determined by the
incompressibility condition

� · v = 0. �A.16�

A recursive procedure has been implemented in order to
determine P. Equation �A.15� is used without the pressure
term to determine an auxiliary velocity field ũk

t+dt:

ũk
t+dt =

1

1 + �s,max
dt

Ren
k2

��uk
t +

dt

Ren
���s�� − �s,max��2Du + F�k

t� .

�A.17�

The recursive procedure

Pk = Pk − dtP�� · u�k,

uk
t+dt = ũk

t+dt +
1

1 + �s,max
dt

Ren
k2

��P�k �A.18�

�with dtP an auxiliary time step� is then iterated until the
mean value of the absolute value of � ·u is less than 10−5 in

the Fourier space. The final pressure field is then stored and
used as the starting point for the next time step. After some
time steps, the number of iterations of procedure �A.18� is
reduced to 1 or 2, and the global iteration is then consider-
ably accelerated. Finally, a backward Fourier transformation
and the addition of the applied velocity field leads to the new
velocity field vt+dt.

2. The phase field

The phase field equation is given by

�

�t
= − v · �  +

1

�
�−

�F
�

− 2c�2� � �� �A.19�

with F=	��1−2�2 /4+�2���2 /2�dr, so that Eq. �A.19� be-
comes

�

�t
= − v · �  +

1

�
��1 − 2� + �2�� − 2c� � ��� .

�A.20�

Once again, numerical difficulties due to the Laplacian term
can be expected in principle at large time steps, but thanks to
the prefactor �2 /� this contribution remains small enough so
that a standard explicit Euler scheme is sufficient:

t+dt = t + dt�− v · �  +
1

�
��1 − 2� + �2�� − 2c� � ����t

.

�A.21�

As for the velocity field, this elementary step is included in a
fourth order Runge-Kutta method.

3. The constitutive equation

The dimensionless Oldroyd-B equation is given by

De
1 − 

2
� ��p

�t
+ v · � �p − � vT · �p − �p · � v� + �p

= �p
1 − 

2
��v + � vT� . �A.22�

For the sake of simplicity, we shall write D̃e=De�1−� /2

and �̃p=�p�1−� /2. This equation is discretized in time
similar the previous ones and we use an implicit scheme to
compute �p at time t+dt:

�p
t+dt =

D̃e

D̃e + dt
��p

t − dtvt � �p
t + dt��vT · �p

t − �p
t · �v��

+
�̃pdt

D̃e + dt
��v + � vT� . �A.23�

Once again, the implicit treatment consists of evaluating �p
on the left-hand-side of Eq. �A.23� at time t+dt, where t and

dt are dimensionless. Using this approach, the case D̃e=0
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does not require any special treatment. The Newtonian case
is then simply recovered since we have in this case

�p
t+dt = �̃p��v + � vT� . �A.24�

Moreover, this equation is valid everywhere in space since
the case =1 �outside the drop�, and then De=1, is not sin-
gular. This elementary step is then also included in a fourth
order Runge-Kutta method.

4. Numerical parameters

The resolution is performed on a rectangular grid of size
NZ�NR, where NZ is the number of grid points in the axial
direction z, and NR is the number of grid points in the radial
direction r. While NR=250,NZ varies between 300 and 1000,
depending on the drop extension. The unit cell is chosen to
be a square �dr=dz=0.03 R, where R is the radius of the
drop at rest�. The phase field interfacial width � is fixed to
�=dr=dz and the relaxation time � introduced in the phase-
field equation �A.19� coincides with tdrop. The time step used
for the dynamical solution is dt=10−2tdrop.
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